【PYG】pytorch中size和shape有什么不同

  • 一般使用tensor.shape打印维度信息,因为简单直接

在 PyTorch 中,sizeshape 都用于获取张量的维度信息,但它们之间有细微的区别。下面是它们的定义和用法:

  1. size

    • size 是一个方法(size())和属性(size),用于返回张量的维度信息。
    • 使用方法 size() 可以选择获取特定维度的大小。
    • 示例:
      import torch
      
      tensor = torch.tensor([[1.0, 2.0, 3.0, 4.0],
                             [2.0, 3.0, 4.0, 5.0],
                             [3.0, 4.0, 5.0, 6.0]])
      
      # 使用 size 方法(无参数)
      size_method = tensor.size()
      print(f"使用 size 方法: {size_method}")  # 输出: 使用 size 方法: torch.Size([3, 4])
      
      # 使用 size 方法(带维度参数)
      size_dim1 = tensor.size(1)
      print(f"维度 1 的大小: {size_dim1}")  # 输出: 维度 1 的大小: 4
      
  2. shape

    • shape 是一个属性,直接返回张量的维度信息,表示为一个 torch.Size 对象。
    • shape 属性不能接受参数,因此不能直接用于获取特定维度的大小。
    • 示例:
      import torch
      
      tensor = torch.tensor([[1.0, 2.0, 3.0, 4.0],
                             [2.0, 3.0, 4.0, 5.0],
                             [3.0, 4.0, 5.0, 6.0]])
      
      # 使用 shape 属性
      shape_attr = tensor.shape
      print(f"使用 shape 属性: {shape_attr}")  # 输出: 使用 shape 属性: torch.Size([3, 4])
      

区别

  • size 方法和属性

    • size 方法可以接受参数,例如 size(dim),用于获取特定维度的大小。
    • size 属性直接返回一个 torch.Size 对象,表示张量的所有维度。
  • shape 属性

    • shape 属性只返回一个 torch.Size 对象,表示张量的所有维度。
    • shape 属性不能直接获取特定维度的大小。

总结

  • size 提供了方法和属性,方法可以接受参数来获取特定维度的大小。

  • shape 仅作为属性,返回整个张量的维度信息,不能接受参数。

  • tensor.size返回<built-in method size of Tensor object at 0x7fee569194a0>

  • tensor.shape返回<class ‘torch.Size’>,tensor.size()返回<class ‘torch.Size’>

示例对比

import torch

tensor = torch.tensor([[1.0, 2.0, 3.0, 4.0],
                       [2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0]])

# 使用 size 属性
size_attr = tensor.size
print(f"使用 size 属性: {size_attr}")  # 输出: 使用 size 属性: torch.Size([3, 4])

# 使用 size 方法
size_method = tensor.size()
print(f"使用 size 方法: {size_method}")  # 输出: 使用 size 方法: torch.Size([3, 4])

# 使用 size 方法获取特定维度的大小
size_dim1 = tensor.size(1)
print(f"维度 1 的大小: {size_dim1}")  # 输出: 维度 1 的大小: 4

# 使用 shape 属性
shape_attr = tensor.shape
print(f"使用 shape 属性: {shape_attr}")  # 输出: 使用 shape 属性: torch.Size([3, 4])

通过以上示例可以看出,size 方法和属性提供了更灵活的用法,而 shape 属性则是一个简单快捷的方法来获取整个张量的维度信息。


当你直接访问 tensor.size 而不带括号时,你访问的是一个方法对象,而不是调用该方法。要获取张量的尺寸,你需要调用该方法,使用 tensor.size()。让我们通过一些示例来澄清这一点。

示例解释

首先,我们创建一个张量:

import torch

tensor = torch.tensor([[1.0, 2.0, 3.0],
                       [4.0, 5.0, 6.0]])

获取张量的尺寸

  1. 使用 size() 方法
size = tensor.size()
print(f"使用 size() 方法: {size}")  # 输出: 使用 size() 方法: torch.Size([2, 3])
  1. 直接访问 size 属性
size_method = tensor.size
print(f"直接访问 size 属性: {size_method}")  # 输出: 直接访问 size 属性: <built-in method size of Tensor object at 0x7fee569194a0>

在第二个示例中,我们得到的是一个方法对象的引用,而不是实际的尺寸信息。

获取特定维度的大小

要获取特定维度的大小,你需要调用 size(dim),其中 dim 是你感兴趣的维度索引:

size_dim1 = tensor.size(1)
print(f"维度 1 的大小: {size_dim1}")  # 输出: 维度 1 的大小: 3

使用 shape 属性

shape 属性是更直接获取张量尺寸的一种方式:

shape = tensor.shape
print(f"使用 shape 属性: {shape}")  # 输出: 使用 shape 属性: torch.Size([2, 3])

总结

  • tensor.size 返回一个方法对象引用。
  • tensor.size() 返回一个 torch.Size 对象,表示张量的形状。
  • tensor.size(dim) 返回特定维度的大小。
  • tensor.shape 直接返回一个 torch.Size 对象,表示张量的形状。

完整示例

import torch

tensor = torch.tensor([[1.0, 2.0, 3.0],
                       [4.0, 5.0, 6.0]])

# 使用 size() 方法
size = tensor.size()
print(f"使用 size() 方法: {size}")  # 输出: 使用 size() 方法: torch.Size([2, 3])

# 直接访问 size 属性
size_method = tensor.size
print(f"直接访问 size 属性: {size_method}")  # 输出: 直接访问 size 属性: <built-in method size of Tensor object at 0x7fee569194a0>

# 获取特定维度的大小
size_dim1 = tensor.size(1)
print(f"维度 1 的大小: {size_dim1}")  # 输出: 维度 1 的大小: 3

# 使用 shape 属性
shape = tensor.shape
print(f"使用 shape 属性: {shape}")  # 输出: 使用 shape 属性: torch.Size([2, 3])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/782090.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数组算法(二):交替子数组计数

1. 官方描述 给你一个二进制数组nums 。如果一个子数组中 不存在 两个 相邻 元素的值 相同 的情况&#xff0c;我们称这样的子数组为 交替子数组 。 返回数组 nums 中交替子数组的数量。 示例 1&#xff1a; 输入&#xff1a; nums [0,1,1,1] 输出&#xff1a; 5 解释&#…

数学系C++ 排序算法简述(八)

目录 排序 选择排序 O(n2) 不稳定&#xff1a;48429 归并排序 O(n log n) 稳定 插入排序 O(n2) 堆排序 O(n log n) 希尔排序 O(n log2 n) 图书馆排序 O(n log n) 冒泡排序 O(n2) 优化&#xff1a; 基数排序 O(n k) 快速排序 O(n log n)【分治】 不稳定 桶排序 O(n…

一.2.(4)放大电路静态工作点的稳定;(未完待续)

1.Rb对Q点及Au的影响 输入特性曲线&#xff1a;Rb减少&#xff0c;IBQ&#xff0c;UBEQ增大 输出特性曲线&#xff1a;ICQ增大&#xff0c;UCEQ减少 AUUO/Ui分子减少&#xff0c;分母增大&#xff0c;但由于分子带负号&#xff0c;所以|Au|减少 2.Rc对Q点及Au的影响 输入特性曲…

【密码学】什么是密码?什么是密码学?

一、密码的定义 根据《中华人民共和国密码法》对密码的定义如下&#xff1a; 密码是指采用特定变换的方法对信息等进行加密保护、安全认证的技术、产品和服务。 二、密码学的定义 密码学是研究编制密码和破译密码的技术科学。由定义可以知道密码学分为两个主要分支&#x…

【做一道算一道】和为 K 的子数组

给你一个整数数组 nums 和一个整数 k &#xff0c;请你统计并返回 该数组中和为 k 的子数组的个数 。 子数组是数组中元素的连续非空序列。 示例 1&#xff1a; 输入&#xff1a;nums [1,1,1], k 2 输出&#xff1a;2 示例 2&#xff1a; 输入&#xff1a;nums [1,2,3],…

深度学习图像生成与分割模型详解:从StyleGAN到PSPNet

文章目录 Style GANDeeplab-v3FCNAdversarial AutoencodersHigh-Resolution Image Synthesis with Latent Diffusion ModelsNeRF: Representing Scenes as Neural Radiance Fields for View SynthesisPyramid Scene Parsing Network Style GAN 输入是一个潜在向量 (z)&#xff…

嵌入式开发SPI基本介绍与应用

目录 #SPI通信协议 #SPI基础概念 #SPI通信模式 #SPI通信时序类型 前言&#xff1a;本篇笔记参考嘉立创的开发文档&#xff0c;连接放在最后。 #SPI通信协议 #SPI基础概念 Serial Peripheral Interface 缩写SPI 翻译&#xff1a;串行外设接口 同步串行通信协议&…

FMEA在大型光伏电站安全生产管理中的应用

一、FMEA概述 FMEA&#xff08;Failure Modes and Effects Analysis&#xff09;即失效模式和影响分析&#xff0c;是一种用于识别和分析产品或过程中潜在故障模式及其影响的方法。它通过对产品或过程中可能出现的故障模式进行系统性地梳理和分析&#xff0c;评估其可能的影响…

Miniconda的常见用法——以Isaacgym为例

1. ubuntu24.04安装minicondda mkdir -p ~/miniconda3 wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh解释下这段代码 bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3~/miniconda3/miniconda.sh: 指向Mi…

【笔记】记一次redis将从节点变成主节点 主节点变成从节点

1.连上虚拟机centos7 2.打开finalshell连接虚拟机 将从节点变为主节点 输出redis-cli -p 要变成主节点的从节点 -a此从节点的密码 输入 replicaof no one 查看端口状态 info replication 总结&#xff1a; redis-cli -p 端口号 -a 密码 replicaof no one info replicati…

STM32第十七课:连接云平台进行数据传输

目录 需求一、云平台项目创建二、代码编写1.导入MQTT包2.连接阿里云3.发布数据 三、关键代码总结 需求 1.通过生活物联网平台设计一个空气质量检测仪app。 2.连接阿里云平台将硬件数据传输到云端&#xff0c;使手机端能够实时收到。 一、云平台项目创建 先进入阿里云生活服务…

cs231n 作业3

使用普通RNN进行图像标注 单个RNN神经元行为 前向传播&#xff1a; 反向传播&#xff1a; def rnn_step_backward(dnext_h, cache):dx, dprev_h, dWx, dWh, db None, None, None, None, Nonex, Wx, Wh, prev_h, next_h cachedtanh 1 - next_h**2dx (dnext_h*dtanh).dot(…

打造属于你的私人云盘:在 OrangePi AIpro 上搭建个人云盘

随着数字化时代的到来&#xff0c;数据的存储和管理变得愈发重要。相比于公共云存储服务&#xff0c;搭建一个属于自己的个人云盘不仅能够更好地保护隐私&#xff0c;还可以更灵活地管理数据。 近期刚好收到了一个 香橙派 AIpro 的开发板&#xff0c;借此机会用来搭建一个属于…

人工智能项目论文复现

文章目录 &#xff08;一&#xff09;技术学习任务Ⅰ、机器学习之聚类1、基本介绍概念2、聚类分析基本介绍3、K均值聚类4、K近邻分类模型(KNN)5、均值漂移聚类6、代码实现7、上述三种算法总结 Ⅱ、机器学习其他常用技术1、决策树基本知识2、异常检测概念3、主成分分析4、决策树…

落日余晖映晚霞

落日余晖映晚霞&#xff0c;立于海滨&#xff0c;望夕阳余晖洒于波光粼粼之上&#xff0c;金光跳跃&#xff0c;若繁星闪烁&#xff0c;耀人心目。 海风轻拂&#xff0c;心境宁静&#xff0c;凡尘俗务皆于此刹那消散&#xff0c;思绪万干&#xff0c;或忆往昔点滴&#xff0c;或…

SQL 对一个经常有数据更新和删除操作的表,怎样优化以减少磁盘空间的占用?

文章目录 一、定期清理不再需要的数据二、使用合适的数据类型三、压缩数据四、删除重复数据五、分区表六、索引优化七、碎片整理八、归档历史数据九、监控和评估 在数据库管理中&#xff0c;当面对一个经常进行数据更新和删除操作的表时&#xff0c;磁盘空间的有效利用是一个重…

PIP换源的全面指南

##概述 在Python的世界里&#xff0c;pip是不可或缺的包管理工具&#xff0c;它帮助开发者安装和管理Python软件包。然而&#xff0c;由于网络条件或服务器位置等因素&#xff0c;直接使用默认的pip源有时会遇到下载速度慢或者连接不稳定的问题。这时&#xff0c;更换pip源到一…

赋值运算符重载和const成员函数和 const函数

文章目录 1.运算符重载(1)(2)运算符重载的语法&#xff1a;(3)运算符重载的注意事项&#xff1a;(4)前置和后置重载区别 2.const成员函数3.取地址及const取地址操作符重载4.总结 1.运算符重载 (1) 我们知道内置类型(整形&#xff0c;字符型&#xff0c;浮点型…)可以进行一系…

利用docker搭建漏洞环境,使用SSRF+Redis写入centos以及ubuntu的公钥,实现免密登录

一、实验环境 kali:在kali中搭建docker容器环境&#xff0c;这里我主要是使用第一个&#xff1b; redis作为一种数据库&#xff0c;它可以将数据写入内存中去&#xff0c;我们通过利用ssrf请求&#xff0c;实现服务器对自己的公钥写入&#xff0c;从而实验免密登录&#xff1b;…

异步调用 - 初识

目录 1、引入 2、同步调用 2.1、例子&#xff1a;支付功能 2.2、同步调用的好处 2.3、同步调用的缺点 3、异步调用 3.1、异步调用的方式 3.2、异步调用的优势 3.3、异步调用的缺点 3.4、什么场景下使用异步调用 3.5、MQ技术选型 1、引入 为什么想要异步通信呢&…